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Abstract

Prospects for discovery of tt̄HH production at the HL-LHC using Boosted

Decision Trees

by

Jonathan O. Tellechea

A measurement of the Higgs boson self-coupling is crucial step in probing the Higgs

potential. One way of probing the Higgs self coupling is through measurements of events

with two Higgs bosons. This thesis studies the tt̄HH production mode in proton-proton

collisions at
√
s = 14 TeV assuming the use of an upgraded ATLAS detector at the

High-Luminosity LHC. The study attempts to improve on a cut-based analysis method

by using machine learning via a Boosted Decision Tree. Considering events with at

least one prompt lepton, we find a maximum significance of 0.35 σ with no systematic

uncertainties on the background. While the significance of this channel remains modest,

in combination with other production modes it will contribute towards measurements of

the Higgs self-coupling at the HL-LHC.
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1

Introduction

The Standard Model (SM) of particle physics is the foundation that helps us

understand high energy physics. The SM characterizes the elementary particles that

make up matter and the forces that mediate interactions between them. The SM is a

theory that explains most of our universe thus allowing for accurate predictions. Cur-

rently the SM can not tell us anything about gravity or dark matter. Quarks and leptons

are half-integer spin fermions with interactions that are mediated by integer-spin bosons

[9]. The Higgs boson (H), currently has not been fully probed which motivates us to

study its properties [1]. The Higgs field is able to couple with itself, this is referred to

as Higgs self coupling. The self-coupling strength, often denoted by λ can tell us more

about the nature of the SM Higgs boson[7]. If the coupling strength is different than that

predicted by the SM, this could be due to new physics, describing phenomena beyond the

SM. A percise measurement of the Higgs self coupling strength can help us understand

the ElectroWeak Phase Transitions (EWPT) in the early universe [7].
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To better understand the Higgs self couplings we use graphical representations

called Feynman diagrams which give us the physics and mathematical expressions needed

to calculate the strength of coupling at vertices λ, cross section σ, and decay widths Γ.

To calculate these quantities the sum over all possible Feynman diagrams are needed,

similar to a Taylor series, where the higher-order terms contribute the least [10]. We

can use the LHC, which has proton-proton (pp) collisions at
√
s = 14 TeV, to produce

a sample of events with two Higgs bosons with a cross section that depends on λHHH,

the trilinear Higgs self coupling.

The channel studied in this thesis is pp→ tt̄HH, where t is for a top quark and

t̄ is for an anti-top quark. The H→ bb̄ decay is considered, given its large branching

ratio of 58%, where b is for a bottom quark and b̄ is for an anti-bottom quark [2]. The

leading order Feynman diagrams for tt̄HH are shown in Figure 1. The two diagrams

shown in Figures 1b and 1c are self coupling Higgs boson processes. These processes

start with an off shell Higgs boson which decays into two Higgs bosons, and then the

remaining t or t̄, and H decay into b or b̄. The diagram in Figure 1a does not contain a

λHHH vertex, therefore this Feynman diagram interferes with the other diagrams in the

calculation of the scattering amplitude.

The tt̄HH channel is promising and previous attempts to observe di-Higgs

production in the tt̄HH production mode have estimated only modest sensitivity at the

HL-LHC [2]. The interference observed in Figure 1a does not seem to contribute much

in calculating the matrix elements, making this channel less sensitive to the value of λ

than other production modes. The number of events in tt̄HH(HH → bb̄bb̄) are small
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(a) Uncoupled Higgs (b) Coupled Higgs (c) Coupled Higgs

Figure 1: Leading order Feynman diagrams for tt̄HH production.

compared to the backgrounds. The backgrounds considered here include tt̄bb̄ + jets,

tt̄H(H → bb̄) + jets, and tt̄Z(Z → bb̄) + jets where Z is the Z boson and jets are any

fermions.

The number of events N depends on the luminosity L, cross section σ, and a

filter efficiency given by Equation (1).

N = σ · L (1)

tt̄HH production at
√
s = 14 TeV has a cross section of 0.981 fb. ATLAS plans

to collect an integrated luminosity of 3000 fb−1 at the CERN HL-LHC.

Using a cut-based analysis one can attempt to isolate the background events

from the tt̄HH events [2]. This can be done by looking for event shape variables that are

used to discriminate between tt̄HH signal and background. This strategy was pursued

in [3] and removes a lot of signal events. The number of signal events is calculated using

Equation (1) by normalising with the branching ratio; 0.981 fb · 0.582· 3000 fb−1 = 990.

While the backgrounds are 100 to 1000 times bigger. Therefore cutting the signal has
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to minimised. With a plethora of possible event shape variables which have not been

exhausted, we switch over to machine learning algorithms. The analysis presented in

this thesis uses a Boosted Decision Tree (BDT).

The BDT uses a multivariate algorithm to apply a cut on the data which

reduces the efficiency of the background and increases the efficiency of the tt̄HH signal;

this is represented by the area under the Receiver Operating Characteristic (ROC) curve.

The ROC curve goes from 0 to 1 in both axes; therefore the maximum would be zero

background and all signal which would result in an area of 1.00 (unitless). To improve the

signal verses the background certain event shape variables and four vector components

are fed to the BDT to train and give back a higher area under the ROC curve.

Some bottlenecks in using the BDT are computing power and/or time. Worse

is that these constraints are inversely proportional. These constraints prevent us from

feeding the BDT all the data components. With these constraints we need to be creative

to select certain event shape variables that improve the area under the ROC curve

without the need to use all four-vector quantities. A trial and error method is used

to reduce the BDT’s time to calculate the ROC curve. Feeding the BDT event shape

variables that have merit as possible identifiers of tt̄HH production will need to be

selected and tested to see if these variable optimize the BDT. However with the huge

dimensionality of the data it is not straightforward to distinguish these variables.

Using a BDT can find regions in phase-space that can identify signal events.

Looking at the ROC curve in Figure 18 the goal is to optimize the separation of the

tt̄HH signal from background. The ROC curve gives us the flexibility to move along
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the curve to find the spot where we can maximize the signal and reject the background.
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2

Data Generation

The data used in the analysis was simulated using the conditions in [3], and

summarised in Table 1. The signal and background samples are generated by using

Monte Carlo generators. The signal is generated using MadGraph for the matrix

element and Pythia8 for the parton shower, while the backgrounds use Sherpa. All

samples are generated at leading order in QCD. The background samples are filtered by

requiring at least one charged lepton with pT >20 GeV. The number of events N at a

luminosity of L, cross section σ, and one-lepton filter is given by equation below:

N = σ · Filter · L (2)

The number of background events are calculated using the given cross section,

luminosity, and one-lepton filter efficiency in Table 1. The signal has no filter and its

cross section is only reduced by the H → bb̄ branching ratio.
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Sample Generator σ (fb) Filter Events in 3 ab−1 Events Generated

tt̄HH (HH→ bb̄bb̄ ) MadGraph/Pythia8 0.33 - 990 20,000

tt̄bb̄ + jets Sherpa 3750 0.52 5,850,000 6,000,000

tt̄H (H→ bb̄ ) + jets Sherpa 371 0.55 612,000 600,000

tt̄Z (Z→ bb̄ ) + jets Sherpa 163 0.55 269,000 300,000

Table 1: Summary of the signal and background samples used in cut based analysis. A

charged lepton filter was applied to the background samples for the cut based analysis.

The same filter was applied to the signal sample for the BDT analysis to prevent any

bias.
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3

Analysis

This analysis uses the semi-leptonic final state, which is represented by the

leading order Feynman diagrams for tt̄HH production as seen in Figure 1. The back-

ground samples semi-leptonic final state consist of an electron or muon and at least 4

b quarks [3]. The data used in this paper is constructed using the parameters used in

[3]. The raw data consist of energy-momentum four vectors, type and number of fun-

damental particle. Event shape variables are used to create a cut which can minimized

the background. The variables that have some discrimination power include :

The average separation in pseudorapidity (srap) between two b-tagged jets

〈η(bi, bj)〉 =
1

N2 −N

N∑
i=1

N∑
j>i

|ηi − ηj |. (3)

Higgs boson candidate mass Mbb, p
µ = (Ei, pppi) and qµ = (Ej , pppj) [10]

Mbb =
√
pµqµ (4)
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Centrality which is the scalar sum of pT for all jets, divided by the energy sum

of all jets.

ETotal =
N∑
i=1

Ei

Centrality =
1

ETotal

N∑
i=1

pTi

(5)

The scalar sum of pT for b-tagged jets, HB

HB =
N∑
i=1

pTi (6)

The cut-based analysis presented in [3] is defined by choosing requirements on

the variables defined above that enhance the predicted signal yield relative to the pre-

dicted background yield. The variables described above are shown in Table 2. Choosing

events with at least 6 jets, 4 b-tagged jets Nb = 4, and a 〈η(bi, bj)〉 < 1.25 reduces the

background by a factor of 7.5 · 10−5 with a signal efficiency of 6.0 · 10−3 as seen in Fig-

ures 2 and 3. No cut selection offered significant improvement in background rejection

or signal efficiency. Testing these regions and or introducing new variables is a way to

optimize the event selection. Some new event shape variables not use in [3] but used

on the BDT are seen in Equations (7) and (8). The ∆R is used as the radius of a cone

where a jet and a lepton are enclosed. A top quark decaying into two leptons via the

W boson and a b-tagged jet; a small ∆R could correlate to a b-tagged jet as opposed to

the other b-tagged jets originating from the λHH vertex.

∆R =
√

(∆η)2 + (∆φ)2 (7)
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Transverse momentum is the momentum perpendicular to the beam of protons. Prior

to the collision transverse momentum is zero. Therefore after the collision using conser-

vation laws we can find the missing transverse momentum mT and at angle φ it exited.

mT =
√

2ElEν(1− Cos(∆φ)) (8)

Figure 2: Left: jet multiplicity, number of jets. Right: Nb, number of jets being recon-

structed from a bottom quark.

Figure 3: Left: 〈η(bi, bj)〉, average separation in pseudorapidity between two b-tagged

jets calculated using Equation (3). Right: Mbb. Calculated using Equation (4).
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Figure 4: Left: Centrality; Right: HB. Both calculated using Equations (5) and (6).

A large set of measured objects are required to describe each event which makes

optimizing a cut-based search challenging. An alternative method is the use of a machine

learning algorithm that can maximize the significance of the signal.

As we turn to Machine learning to assist us, we will use a BDT implementation

from a Python library called Scikit-learn [8]. The BDT Classifier used is AdaBoost with

a Stagewise Additive Modeling using a Multi-class Exponential loss function (SAMME)

algorithm [6]. The adaBoost classifier uses N weak classifiers and weights the data by

wi = 1/N where i is the iterated index and N is the number of classifiers. If the training

point fails the match its weight is increased hence boosted, and if the match is correct

then the weight is decreased[6]. This is iterated over 500 to 1000 times, the classifiers

are then combined and a score is given, the BDT score. This BDT score distribution in

Figure 18 can show us where to apply a cut with given BDT score.

The data is split, 10% is stored for future evaluation at random to not cause

any bias. The remaining 90% is split further, half for training and half for testing. The

data that is trained are the event shape variables that show the most promise. We

have chosen to train the data in phases, with each new phase containing the variables
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from the previous plus a few more. Phase 1 we used jet multiplicity as the event shape

variable, this was to test the BDT. Phase 2 we added Nb, and 〈η(bi, bj)〉. Phase 3 we

added Centrality, HB, and Mbb. Phase 4 we added ∆Ri, and mTi where (i = 1,2,3

for the 3 leptons). With each phase fed to the BDT we obtain BDT plots similar to

Figure 18, and Figure 5. Figure 5 shows witch variables were more important. Since

we are limited by computation power and time, Figure 5 can help us pick variables that

contribute the most. Even though we can not know how other variables will contribute

with new variables. Scanning through the ROC curve in Figure 18 an optimized BDT

score threshold is chosen to display the cuts on the event shape variables for Figures 6,

9 and 12.
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4

Results

Using the cut based analysis leaves very few events as summarized in Table 2.

This does not come as a surprise as the cross section is small for tt̄HH production. It

is challenging to find a region in the event shape variables that will optimise the signal.

Sample No cuts Trigger One lepton ≥ 7 jets ≥ 5 b-tags η(bi, bj) ≥ 6 b-tags

tt̄HH 990 301 258 169 25 6 6

tt̄H 612000 351668 296206 94202 1914 113 113

tt̄Z 269000 152516 128580 37185 750 21 21

tt̄bb̄ 5850000 3487500 2935502 646765 12481 368 368

Total background 6731000 3991684 3360288 778152 15145 502 502

Table 2: Summary of cuts applied to signal and background event. η(bi, bj) column are

for cuts with a 〈η(bi, bj)〉 < 1.25.

Using a BDT to train on new event shape variables which can shed light on how
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which variables work. As we explore, the variables that are important remain consistent

through the phases. Due to this consistency we will focus on phase 4, The importance

plot is part of the BDT which gives a score to each variable as seen in Figure 5. We can

see the top three variables are the Nb, 〈η(bi, bj)〉, and Centrality.

Figure 5: Importance; This plot ranks variables after training and testing and ranks

them by giving an F score, the higher the F score the more important the variable is

hence the name.

First, looking at Nb in Figure 6 we can see at Nb ≥ 5 the signal does not change

much while the background gets reduced. While for Nb < 5 both signal and background
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are reduced. Since the events are plotted on a log scale this reduction is an important

feature. We can see that signal events are favored for Nb ≥ 5. Next, looking at 〈η(bi, bj)〉

in Figure 6 the 〈η(bi, bj)〉 < 4 is favored for the signal events. The use of the log scale

on the plots in Figure 6 shows that even with these distinction the background events

are still dominant. The 2D heatmap in Figures 7 and 8 gives us all the BDT scores for

signal and background respectively. Now looking at Figure 9 the plots do not show any

Figure 6: Left: jet multiplicity, number of jets. Middle: Nb, number of jets being recon-

structed from a bottom quark. Right: 〈η(bi, bj)〉, average separation in pseudorapidity

between two b-tagged jets calculated using Equation (3). Solid lines represent full data

while dashed lines represent data with a BDT score greater than -0.2.

Figure 7: A 2D heatmap with BDT scores on the Y-axis; Same X-axis as in Figure 6.;

logarithmic color scale for number of events. Number of signal events and BDT score

for Phase 4.
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Figure 8: A 2D heatmap with BDT scores on the Y-axis; Same X-axis as in Figure 6.;

logarithmic color scale for number of events. Number of background events and BDT

score for Phase 4.

obvious distinction and the background is still dominant. The BDT makes it possible

to find connections between event shape variables that we cannot see by looking at 1D

plots of event shape variables. This can be seen in Figure 5 where the Centrality variable

is crucial, yet looking at Figures 9 to 11 it is not obvious. Again, the Figure 12 shows

Figure 9: Left: Centrality; Middle: HB; Right: Mbb. All calculated using Equations (4)

to (6). Solid lines represent full data while dashed lines represent data with a BDT score

greater than -0.2.

no distinction and these event shape variables are not crucial as seen in Figure 5. The

only feature that stands out is majority of events have a small ∆R as seen in Figures 12

to 14. Lastly, Figures 15 to 17 show no distinctions and are ranked low Figure 5.
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Figure 10: A 2D heatmap with BDT scores on the Y-axis; Same X-axis as in Figure 9.;

logarithmic color scale for number of events. Number of signal events and BDT score

for Phase 4.

Figure 11: A 2D heatmap with BDT scores on the Y-axis; Same X-axis as in Figure 9.;

logarithmic color scale for number of events. Number of background events and BDT

score for Phase 4.

Figure 12: Left: ∆R1; Middle: ∆R2; Right: ∆R3. All calculated using Equation (7).

Solid lines represent full data while dashed lines represent data with a BDT score greater

than -0.2.
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Figure 13: A 2D heatmap with BDT scores on the Y-axis; Same X-axis as in Figure 12.;

logarithmic color scale for number of events. Number of signal events and BDT score

for Phase 4.

Figure 14: A 2D heatmap with BDT scores on the Y-axis; Same X-axis as in Figure 12.;

logarithmic color scale for number of events. Number of background events and BDT

score for Phase 4.

Figure 15: Left: mT1; Middle: mT2; Right: mT3. All calculated using Equation (8).

Solid lines represent full data while dashed lines represent data with a BDT score greater

than -0.2.
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Figure 16: A 2D heatmap with BDT scores on the Y-axis; Same X-axis as in Figure 15.;

logarithmic color scale for number of events. Number of signal events and BDT score

for Phase 4.

Figure 17: A 2D heatmap with BDT scores on the Y-axis; Same X-axis as in Figure 15.;

logarithmic color scale for number of events. Number of background events and BDT

score for Phase 4.
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Even though some of these figures do not show any distinctions, the expected

behavior of the figures can assure us that there are no artifacts that are biasing the

analysis. The ROC curve in Figure 18 has an area of 0.86 (unit-less). Compared to

[3] at the same background efficiency we find a signal efficiency that is larger by a

factor of 1.003, which tells us that the BDT and the cut based analysis at the same

background efficiency are effectively identical. The significance of the cut based analysis

reported in the [3] is 0.26 σ. Scanning the ROC curve to find the an estimated max

significance, which include no systematic uncertainties on the background, we find a

maximum significance of 0.35 σ.

Figure 18: Trained and tested using Phase 4. Top: ROC curve; True positive rate, False

positive rate are the efficiencies of the signal and background, respectively. Bottom:

BDT output distribution used for over-training checks.

The computation and time restraints prevent us from using all low level vari-
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ables and some high level variables. Using the event shape variables that have shown

promise in the cut base analysis are fed to the BDT to hopefully optimise time and or

area under the ROC curve in Figure 18.
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5

Conclusion

The cut-based analysis has been shown to be limited on event shape variables

that have a clear discrimination feature. Improving this analysis by creating new event

shape variables is an inefficient method alone. However, with the help of machine learn-

ing we can discover the importance of some event shape variables. The cut-based analysis

alone was optimised for a statistical significance of tt̄HH production using S/
√
B, which

resulted in a 0.26 σ. With the use of a BDT the statistical maximum significance of

tt̄HH production resulted in a 0.35 σ with no systematic uncertainties on the back-

ground. With the limited event shape variables fed to the BDT, we find that a BDT can

beat a cut-based analysis. The tt̄HH production mode looks promising in contributing

with measurements of the Higgs self-coupling at the HL-LHC.

Although only a selected amount of variables were used in this thesis adding

both low and high level variables should continue to improve the sensitivity. Testing

other algorithms and classifiers along with testing and training hyperparameters can be
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studied to converge more quickly on an optimal BDT configuration. This could then

allow for more high level event shape variables to be used. In this thesis a BDT was

used for machine learning, other methods like deep learning have shown to have promise

with particle physics [5, 4].
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